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Local Features
(contd.)

Readings: Mikolajczyk and Schmid; 
F&P Ch 10

March 6, 2008

Motivation…  
• Feature points are used also for:

Image alignment (homography, fundamental matrix)
3D reconstruction
Motion tracking
Object recognition
Indexing and database retrieval
Robot navigation
… other

We want to:
detect the same interest points regardless of 
image changes

Darya Frolova, Denis Simakov
http://www.wisdom.weizmann.ac.il/~deniss/vision_spring04/files/InvariantFeatures.ppt

Models of Image Change

• Geometry
Rotation
Similarity (rotation + uniform scale)

Affine (scale dependent on direction)
valid for: orthographic camera, locally planar 
object

• Photometry
Affine intensity change (I → a  I + b)

Review: A Simple Example

Harris corner detector

C.Harris, M.Stephens. “A Combined Corner and Edge Detector”. 1988

The Basic Idea

• We should easily recognize the point by looking 
through a small window

• Shifting a window in any direction should give a large 
change in intensity
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Harris Detector: Basic Idea

“flat” region:
no change in 
all directions

“edge”:
no change along 
the edge direction

“corner”:
significant change 
in all directions

Harris Detector: Mathematics
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Window-averaged change of intensity for the shift [u,v]:

IntensityShifted 
intensity

Window 
function

orWindow function w(x,y) =

Gaussian1 in window, 0 outside

Harris Detector: Mathematics
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Expanding E(u,v) in a 2nd order Taylor series expansion, we 
have,for small shifts [u,v],  a bilinear approximation:
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where M is a 2×2 matrix computed from image derivatives:

Harris Detector: Mathematics
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Intensity change in shifting window: eigenvalue analysis

λ1, λ2 – eigenvalues of M

direction of the 
slowest change

direction of the 
fastest change

(λmax)-1/2

(λmin)-1/2

Ellipse E(u,v) = const

Harris Detector: Mathematics

λ1

λ2

“Corner”
λ1 and λ2 are large,
λ1 ~ λ2;
E increases in all 
directions

λ1 and λ2 are small;
E is almost constant 
in all directions

“Edge”
λ1 >> λ2

“Edge”
λ2 >> λ1

“Flat”
region

Classification of 
image points using 
eigenvalues of M:

Harris Detector: Mathematics

Measure of corner response:
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(k – empirical constant, k = 0.04-0.06)
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Harris Detector: Mathematics

λ1

λ2 “Corner”

“Edge”

“Edge”

“Flat”

• R depends only on 
eigenvalues of M

• R is large for a corner

• R is negative with large 
magnitude for an edge

• |R| is small for a flat
region

R > 0

R < 0

R < 0|R| small

Harris Detector
• The Algorithm:

– Find points with large corner response function  R
(R > threshold)

– Take the points of local maxima of R

Harris Detector: Workflow Harris Detector: Workflow
Compute corner response R

Harris Detector: Workflow
Find points with large corner response: R>threshold

Harris Detector: Workflow
Take only the points of local maxima of R
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Harris Detector: Workflow Harris Detector: Summary

• Average intensity change in direction [u,v] can be expressed as a 
bilinear form: 

• Describe a point in terms of eigenvalues of M:
measure of corner response

• A good (corner) point should have a large intensity change in all 
directions, i.e. R should be large positive
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Harris Detector: Some Properties
• Rotation invariance

Ellipse rotates but its shape (i.e. eigenvalues) 
remains the same

Corner response R is invariant to image rotation

Harris Detector: Some Properties

• Partial invariance to additive and multiplicative 
intensity changes

 Only derivatives are used => invariance 
to intensity shift I → I + b

 Intensity scale: I → a I

R

x (image coordinate)

threshold

R

x (image coordinate)

Harris Detector: Some Properties

• Quality of Harris detector for different scale 
changes

Repeatability rate:
# correspondences

# possible correspondences

C.Schmid et.al. “Evaluation of Interest Point Detectors”. IJCV 2000

Harris Detector: Some Properties

• Not invariant to image scale!

All points will be 
classified as edges

Corner !
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Scale Invariant Detection

• Consider regions (e.g. circles) of different sizes around 
a point

• Regions of corresponding sizes will look the same in 
both images

Scale Invariant Detection

• The problem: how do we choose corresponding circles 
independently in each image?

Scale Invariant Detection
• Solution:

– Design a function on the region (circle), which is “scale 
invariant” (the same for corresponding regions, even if 
they are at different scales)

Example: average intensity. For corresponding regions 
(even of different sizes) it will be the same.

scale = 1/2

– For a point in one image, we can consider it as a 
function of region size (circle radius) 

f

region size

Image 1 f

region size

Image 2

Scale Invariant Detection
• Common approach:

scale = 1/2
f

region size

Image 1 f

region size

Image 2

Take a local maximum of this function

Observation: region size, for which the maximum is 
achieved, should be invariant to image scale.

s1 s2

Important: this scale invariant region size is 
found in each image independently!

Scale Invariant Detection

• Functions for determining scale
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Kernel Imagef = ∗
Kernels:

where Gaussian

Note: both kernels are invariant to 
scale and rotation

(Laplacian)

(Difference of Gaussians)

Scale Invariant Detectors

• Harris-Laplacian1

Find local maximum of:
– Harris corner detector in 

space (image coordinates)
– Laplacian in scale

1 K.Mikolajczyk, C.Schmid. “Indexing Based on Scale Invariant Interest Points”. ICCV 2001
2 D.Lowe. “Distinctive Image Features from Scale-Invariant Keypoints”. Accepted to IJCV 2004
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• SIFT (Lowe)2

Find local maximum of:
– Difference of Gaussians in 

space and scale

scale

x

y
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←
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Scale Invariant Detectors

K.Mikolajczyk, C.Schmid. “Indexing Based on Scale Invariant Interest Points”. ICCV 2001

• Experimental evaluation of detectors 
w.r.t. scale change

Repeatability rate:
# correspondences

# possible correspondences

Scale Invariant Detection: 
Summary

• Given: two images of the same scene with a large scale 
difference between them

• Goal: find the same interest points independently in 
each image

• Solution: search for maxima of suitable functions in 
scale and in space (over the image)

Methods: 
1. Harris-Laplacian [Mikolajczyk, Schmid]: maximize Laplacian over 

scale, Harris’ measure of corner response over the image

2. SIFT [Lowe]: maximize Difference of Gaussians over scale and space

Affine Invariant Detection

• Above we considered:
Similarity transform (rotation + uniform scale)

• Now we go on to:
Affine transform (rotation + non-uniform scale)

Affine Invariant Detection
• Take a local intensity extremum as initial point
• Go along every ray starting from this point and stop when 

extremum of function  f is reached

T.Tuytelaars, L.V.Gool. “Wide Baseline Stereo Matching Based on Local, 
Affinely Invariant Regions”. BMVC 2000.
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points along the ray

• We will obtain approximately 
corresponding regions

Remark: we search for scale 
in every direction

Affine Invariant Detection

• all points corresponding to extremum of f(t) along rays originating from the same local 
extremum are linked to enclose an (affinely invariant) region (see figure 2). 

• This often irregularly-shaped region is then replaced by an ellipse having the same 
shape moments up to the second order. This ellipse-fitting is affinely invariant as well.

Affine Invariant Detection

• Algorithm summary (detection of affine invariant region):
Start from a local intensity extremum point
Go in every direction until the point of extremum of some 

function  f
Curve connecting the points is the region boundary
Compute geometric moments of orders up to 2 for this region
Replace the region with ellipse

T.Tuytelaars, L.V.Gool. “Wide Baseline Stereo Matching Based on Local, 
Affinely Invariant Regions”. BMVC 2000.
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Affine Invariant Detection

• The regions found may not exactly correspond, so we approximate 
them with ellipses

• Geometric Moments: 

2

( , )p q
pqm x y f x y dxdy= ∫ Fact: moments mpq uniquely 

determine the function f

Taking  f to be the characteristic function of a region 
(1 inside, 0 outside), moments of orders up to 2 allow 
to approximate the region by an ellipse

This ellipse will have the same moments of 
orders up to 2 as the original region

Affine Invariant Detection

q Ap=

2 1
TA AΣ = Σ

1
2 1Tq q−Σ =

2 region 2

TqqΣ =

• Covariance matrix of region points defines an ellipse:

1
1 1Tp p−Σ =

1 region 1

TppΣ =

( p = [x, y]T is relative 
to the center of mass) 

Ellipses, computed for corresponding 
regions, also correspond!

Affine Invariant Detection : 
Summary

• Under affine transformation, we do not know in advance shapes of
the corresponding regions

• Ellipse given by geometric covariance matrix of a region robustly 
approximates this region

• For corresponding regions ellipses also correspond.

Methods: 
1. Search for extremum along rays [Tuytelaars, Van Gool]:

2. Maximally Stable Extremal Regions [Matas et.al.]


