

We want to:

detect the same interest points regardless of image changes

Darya Frolova, Denis Simakov

Motivation...

- Feature points are used also for:

Image alignment (homography, fundamental matrix)
3D reconstruction
Motion tracking
Object recognition
Indexing and database retrieval
Robot navigation
... other

Models of Image Change

- Geometry

Rotation
Similarity (rotation + uniform scale)

Affine (scale dependent on direction)
valid for: orthographic camera, locally planar object

- Photometry

Affine intensity change $(I \rightarrow a I+b)$

The Basic Idea

- We should easily recognize the point by looking through a small window
- Shifting a window in any direction should give a large change in intensity

"flat" region: no change in all directions

"edge": no change along the edge direction

"corner": significant change in all directions

Harris Detector: Mathematics

Expanding E(u,v) in a $2^{\text {nd }}$ order Taylor series expansion, we have,for small shifts $[u, v]$, a bilinear approximation:

$$
E(u, v) \cong[u, v] \quad M\left[\begin{array}{l}
u \\
v
\end{array}\right]
$$

where M is a 2×2 matrix computed from image derivatives:

$$
M=\sum_{x, y} w(x, y)\left[\begin{array}{cc}
I_{x}^{2} & I_{x} I_{y} \\
I_{x} I_{y} & I_{y}^{2}
\end{array}\right]
$$

Harris Detector: Mathematics

Classification of image points using eigenvalues of M :

Window-averaged change of intensity for the shift $[u, v]$:

Harris Detector: Mathematics

Intensity change in shifting window: eigenvalue analysis

$$
E(u, v) \cong[u, v] \quad M\left[\begin{array}{l}
u \\
v
\end{array}\right] \quad \lambda_{1}, \lambda_{2} \text {-eigenvalues of } M
$$

Harris Detector: Mathematics

Measure of corner response:

$$
\begin{gathered}
R=\operatorname{det} M-k(\operatorname{trace} M)^{2} \\
\operatorname{det} M=\lambda_{1} \lambda_{2} \\
\operatorname{trace} M=\lambda_{1}+\lambda_{2} \\
(k-\text { empirical constant, } k=0.04-0.06)
\end{gathered}
$$

- R depends only on eigenvalues of M
- R is large for a corner
- R is negative with large magnitude for an edge
$\bullet|R|$ is small for a flat region

Harris Detector: Workflow

Harris Detector: Workflow
Find points with large corner response: $R>$ threshold

Harris Detector

- The Algorithm:

- Find points with large corner response function R ($R>$ threshold)
- Take the points of local maxima of R

Harris Detector: Workflow
Compute corner response R

Harris Detector: Workflow
Take only the points of local maxima of R

Harris Detector: Some Properties

- Rotation invariance

Corner response R is invariant to image rotation

Ellipse rotates but its shape (i.e. eigenvalues) remains the same

Harris Detector: Some Properties

- Quality of Harris detector for different scale changes

Harris Detector: Summary

- Average intensity change in direction $[u, v]$ can be expressed as a bilinear form:

$$
E(u, v) \cong[u, v] \quad M \quad\left[\begin{array}{l}
u \\
v
\end{array}\right]
$$

- Describe a point in terms of eigenvalues of M : measure of corner response

$$
R=\lambda_{1} \lambda_{2}-k\left(\lambda_{1}+\lambda_{2}\right)^{2}
$$

- A good (corner) point should have a large intensity change in all directions, i.e. \boldsymbol{R} should be large positive

Harris Detector: Some Properties

- Partial invariance to additive and multiplicative intensity changes
\checkmark Only derivatives are used $=>$ invariance to intensity shift $I \rightarrow I+b$
\checkmark Intensity scale: $I \rightarrow a I$

x (image coordinate)

Harris Detector: Some Properties

- Not invariant to image scale!

Corner !
All points will be classified as edges

Scale Invariant Detection

- Consider regions (e.g. circles) of different sizes around a point
- Regions of corresponding sizes will look the same in both images

Scale Invariant Detection

- Solution

- Design a function on the region (circle), which is "scale invariant" (the same for corresponding regions, even if they are at different scales)

Example: average intensity. For corresponding regions (even of different sizes) it will be the same.

- For a point in one image, we can consider it as a function of region size (circle radius)

$$
\xrightarrow{\text { cale }=1 / 2}
$$

Scale Invariant Detection

- Functions for determining scale

$$
f=\text { Kernel } * \text { Image }
$$

Kernels:
$L=\sigma^{2}\left(G_{x x}(x, y, \sigma)+G_{y y}(x, y, \sigma)\right)$ (Laplacian)
$D o G=G(x, y, k \sigma)-G(x, y, \sigma)$
(Difference of Gaussians)
where Gaussian

$$
G(x, y, \sigma)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{x^{2}+y^{2}}{2 \sigma^{2}}}
$$

Note: both kernels are invariant to scale and rotation

- The problem: how do we choose corresponding circles independently in each image?

Scale Invariant Detection

- Common approach:

Take a local maximum of this function
Observation: region size, for which the maximum is achieved, should be invariant to image scale.

Important: this scale invariant region size is found in each image independently!

Scale Invariant Detectors

- Harris-Laplacian ${ }^{1}$ Find local maximum of:
- Harris corner detector in space (image coordinates)
- Laplacian in scale

- SIFT (Lowe) ${ }^{2}$ Find local maximum of:
- Difference of Gaussians in space and scale

[^0]${ }^{2}$ D.Lowe. "Distinctive Image Features from Scale-Invariant Keypoints". Accepted to IJCV 2004

Scale Invariant Detectors

- Experimental evaluation of detectors w.r.t. scale change

K.Mikolajczyk, C.Schmid. "Indexing Based on Scale Invariant Interest Points". ICCV 2001

Affine Invariant Detection

- Above we considered: Similarity transform (rotation + uniform scale)

- Now we go on to:

Affine transform (rotation + non-uniform scale)

Scale Invariant Detection: Summary

- Given: two images of the same scene with a large scale difference between them
- Goal: find the same interest points independently in each image
- Solution: search for maxima of suitable functions in scale and in space (over the image)

Methods:

1. Harris-Laplacian [Mikolajczyk, Schmid]: maximize Laplacian over scale, Harris' measure of corner response over the image
2. SIFT [Lowe]: maximize Difference of Gaussians over scale and space

Affine Invariant Detection

- Take a local intensity extremum as initial point
- Go along every ray starting from this point and stop when extremum of function f is reached

$$
f(t)=\frac{\left|I(t)-I_{0}\right|}{\frac{1}{t} \int_{0}^{t}\left|I(t)-I_{0}\right| d t}
$$

- We will obtain approximately corresponding regions

Remark: we search for scale
in every direction

T.Tuytelaars, L.V.Gool. "Wide Baseline Stereo Matching Based on Local,

Affinely Invariant Regions". BMVC 2000.

Affine Invariant Detection

Figure 2: The intensity along "rays" emanating from a local extremum are examined. The point on each ray for which a function $f(t)$ reaches an extremum is selected. Linking these points together yields an affinely invariant region, to which an ellipse is fitted using moments.

- all points corresponding to extremum of $f(t)$ along rays originating from the same local extremum are linked to enclose an (affinely invariant) region (see figure 2).
- This often irregularly-shaped region is then replaced by an ellipse having the same shape moments up to the second order. This ellipse-fitting is affinely invariant as well.

Affine Invariant Detection

- Algorithm summary (detection of affine invariant region):

Start from a local intensity extremum point
Go in every direction until the point of extremum of some function f
Curve connecting the points is the region boundary
Compute geometric moments of orders up to 2 for this region Replace the region with ellipse

[^1] Affinely Invariant Regions". BMVC 2000.

Affine Invariant Detection

- The regions found may not exactly correspond, so we approximate them with ellipses
- Geometric Moments:

$$
m_{p q}=\int_{\square^{2}} x^{p} y^{q} f(x, y) d x d y \quad \begin{gathered}
\text { Fact: moments } m_{p q} \text { uniquely } \\
\text { determine the function } f
\end{gathered}
$$

Taking f to be the characteristic function of a region (1 inside, 0 outside), moments of orders up to 2 allow to approximate the region by an ellipse

This ellipse will have the same moments of
 orders up to 2 as the original region

Affine Invariant Detection

- Covariance matrix of region points defines an ellipse:

$p^{T} \Sigma_{1}^{-1} p=1$	$q^{T} \Sigma_{2}^{-1} q=1$
$\Sigma_{1}=\left\langle p p^{T}\right\rangle_{\text {region } 1}$	
($p=[x, y]^{\mathrm{T}}$ is relative to the center of mass $)$	$\left.\Sigma_{2}=A q^{T}\right\rangle_{\text {region } 2}$

Ellipses, computed for corresponding regions, also correspond!

Affine Invariant Detection :

Summary

- Under affine transformation, we do not know in advance shapes of the corresponding regions
- Ellipse given by geometric covariance matrix of a region robustly approximates this region
- For corresponding regions ellipses also correspond.

Methods:

1. Search for extremum along rays [Tuytelaars, Van Gool]:
2. Maximally Stable Extremal Regions [Matas et.al.]

[^0]: ${ }^{1}$ K.Mikolajczyk, C.Schmid. "Indexing Based on Scale Invariant Interest Points". ICCV 2001

[^1]: T.Tuytelaars, L.V.Gool. "Wide Baseline Stereo Matching Based on Local,

